LIMA: Leveraging Large Language Models and
MCP Servers for Initial Machine Access

Mohammad Ibrahim Saleem!, Sohan Simha Prabhakar!, Abhinav Harsha?, Devayani Nagabhushan3,

William Arthur Conklin!, Kyu In Lee!, and Tania Banerjee

1

!'Department of Information Science Technology, University of Houston, Houston, Texas 77204
2Top Grep Tech, Bangalore, India

3Lebanon Trail High School, Frisco, Texas 75035
Email: {msaleem10, sprabhakar3, waconklin, klee49, tbanerjee} @uh.edu, {abinavharsha, devayani.nagabhushan}@gmail.com

Abstract—We present LIMA (Large Language-Model-driven
Initial Machine Access), a penetration testing framework that
pairs off-the-shelf LLMs with Model Context Protocol (MCP)
servers to orchestrate automated initial-access reconnaissance,
enumeration, and exploitation. LIMA’s modular design allows
an LLM to invoke scanners, parse outputs, consult vulnerability
databases, and generate exploits while receiving minimal human
input. We evaluate Claude 3.5 and GPT-40 on five targets:
four HackTheBox machines and a custom VM and compare
their performance with that of beginner- and expert-level human
testers. Claude finished four boxes in a mean time of 13 minutes
which is up to 2x faster than the expert and required help only
for CAPTCHAs, achieving autonomous completion otherwise.
GPT-40, with sporadic guidance, completed two boxes in 17.5
minutes. Both models failed on a BurpSuite-dependent target,
showing that missing GUI tooling, not model logic, is now the
main bottleneck. Token-cost analysis puts a full autonomous run
at < $0.05. These results establish the first quantitative baseline
for AI-augmented penetration testing at the initial-access phase.

Index Terms—Large Language Models, Initial Access, Cyber-
security Reconnaissance, Prompt Engineering, AI-driven Cyber-
security.

I. INTRODUCTION

In penetration testing, initial access to a target system is
the most critical phase of any cyber-attack [1]], forcing an ad-
versary to bridge the gap between external reconnaissance and
internal compromise. This step of the cyber kill chain typically
demands extensive technical expertise: attackers must identify
vulnerable services, understand their weaknesses, craft appro-
priate exploits, and execute them while evading detection [2],
[3l. Yet the rapid advancement of large language models
(LLMs), for example, PenTestGPT [4]] and work by Happe and
Cito [5] already interpret advisories, generate exploit code, and
debug failures. This capability shift raises an urgent question
echoed by ADAPT [6]: can artificial intelligence automate the
expertise required for initial access?

Despite growing alarm over LLM-assisted attacks, no prior
work has systematically measured how far an off-the-shelf
model can autonomously drive an intrusion, namely, from
reconnaissance all the way to initial access [5], [6]. Existing
studies mostly discuss hypothetical risks or showcase one-off
demos that still depend on heavy human steering [4], [7]. We
close this gap with a controlled framework in which the LLM
itself launches scans, selects exploits, and adapts to system

979-8-3315-5397-5/25/$31.00 ©2025 IEEE

feedback, while a human operator merely observes and inter-
venes only when strictly necessary e.g., when the process stalls
on CAPTCHAs or similar roadblocks. By cleanly separating
the model’s reasoning from occasional safety interventions,
we quantify its tactical capability without conflating it with
manual shell work. Claude 3.5 and GPT-40 were evaluated
against four HackTheBox machines covering remote-code
execution, SQL injection, command injection, and credential
disclosure and a custom exam VM, with results compared
to beginner- and expert-level human testers under identical
conditions.

Evaluating LLM capabilities in offensive security presents
several challenges. First, the stochastic nature of LLM outputs
creates reproducibility concerns, as identical prompts can
yield different exploitation strategies [§]]. Second, isolating the
LLM’s strategic reasoning from mechanical execution requires
careful experimental design to avoid conflating planning with
tooling effects [6]. Third, fair comparison with human testers
must account for fundamentally different problem-solving
modes [4]]. To address these challenges, we develop a standard-
ized evaluation protocol that ensures consistent testing condi-
tions across all trials. Our framework implements structured
prompt engineering to minimize output variability, employs
strict operator guidelines to maintain execution consistency,
and establishes clear metrics that capture both success rates
and reasoning quality. This systematic approach allows us to
quantify LLM effectiveness while acknowledging the inherent
complexities of human-Al comparison in dynamic security
scenarios.

Our empirical evaluation demonstrates clear differences in
how LLMs approach initial access challenges compared to
human penetration testers. The LLMs demonstrated strong
performance in tasks requiring pattern matching and knowl-
edge retrieval, successfully identifying vulnerable services and
mapping them to known exploits in most cases. However, they
exhibited critical weaknesses in adaptive problem-solving,
particularly when initial exploitation attempts failed or when
targets presented non-standard configurations. These findings
suggest that while LLMs can accelerate certain aspects of pen-
etration testing, they lack the creative reasoning and contextual
understanding that experienced human testers employ. Our
work provides the first quantitative baseline for understand-
ing these capabilities and limitations, offering essential data
for security teams preparing defenses against Al-augmented

threats.

This work makes the following key contributions:

1) We introduce LIMA, the first modular system that pairs
off-the-shelf large language models with Model Context
Protocol (MCP) servers to automate reconnaissance, enu-
meration, and exploitation for initial access.

2) We create the first quantitative benchmark for Al-driven
initial access, evaluating Claude 3.5, GPT-40, and two
human testers on four public HackTheBox machines plus
a private exam VM. LIMA’s modular design also allows
other LLMs to be plugged in effortlessly.

3) Experiments show Claude 3.5 achieves 90-100% au-
tonomous completion on low-complexity boxes, while
failures stem from missing GUI-bound tooling (e.g.,
BurpSuite) rather than LLM logic. We provide detailed
token-usage and API-cost metrics.

The remainder of this paper is organized as follows: Sec-
tion |lI| reviews prior work in the domain, and Section |II] de-
scribes our methodology. Section [[V]presents the experimental
findings, with concluding remarks provided in Section

II. RELATED WORK

Early work showed that LLMs can act as “Al sparring part-
ners,” helping testers brainstorm attack plans and probe single,
sandboxed targets under tight human guidance [5]]. Follow-up
studies went modular: a three-stage controller boosted task-
completion rates by orchestrating tool calls and prompt chains
[4]], while a 50 k-entry question—answer corpus improved fine-
tuned models on quiz-style penetration tasks [7[]. Although
encouraging, these efforts remain confined to narrow sub-
tasks, scripted labs, or Q&A settings that stop short of the
messy, end-to-end challenge posed by preactical initial access.

Beyond LLM-centric research, a rule-based architecture
has automated attack planning along predefined paths on
Metasploitable snapshots and a training lab [6]]. In parallel, an
interview study mapped how seasoned white-hat professionals
make decisions and highlighted the need for human oversight
in high-risk environments [9]]. Both strands underscore impor-
tant tooling and workflow insights but still assume either static
exploit graphs or continuous human control.

The literature thus offers several pieces of the puzzle,
including prompt-driven helpers, modular controllers, curated
datasets, and formal attack graphs. What remains untested is
the central question posed in our introduction: can an off-
the-shelf LLM, without task-specific fine-tuning or custom
modules, autonomously bridge reconnaissance and compro-
mise across diverse live systems? Our system is designed
to operate with minimal human intervention and, in many
cases, can complete the entire initial access workflow 100%
autonomously. By placing such a model in direct competition
with human testers on four HackTheBox machines and isolat-
ing its reasoning from execution mechanics, our study supplies
the first quantitative baseline for Al-driven initial access under
conditions that resemble real enterprise targets.

III. METHODOLOGY

In this work, we adopt a structured penetration testing
methodology to simulate real-world cyberattacks and evalu-
ate the effectiveness of both human-led and LLM-assisted
approaches for gaining initial access to vulnerable systems.
Our five-phase penetration-testing framework is described in
Section The LLM-assisted access pipeline and its MCP
integration are outlined in Section while Section
details the Model Context Protocol (MCP) architecture that
underpins LIMA. Finally, Section[[II-D]presents the evaluation
strategy, including the protocol, metrics, and test environment.

A. Penetration Testing Framework

A leading cybersecurity certification body, the Interna-
tional Council of E-Commerce Consultants (EC-Council),
has defined a structured penetration testing methodology [1]]
consisting of five distinct phases (reconnaissance, scanning,
vulnerability assessment, exploitation, and reporting):

a) Reconnaissance: : The first step in the penetration
testing process is gathering information about the target sys-
tem or organization. This involves collecting details such as
user accounts, operating systems, applications, and network
topology.

b) Scanning: : Scanning builds on the reconnaissance
stage by actively probing the network or system to identify live
hosts, open ports, and running services. This step uses various
tools to track network activity on the target host. Identifying
open ports is critical, as they often represent potential entry
points for attackers and inform the development of effective
penetration strategies.

c) Vulnerability Assessment: : In this stage, the tester
analyzes the scanned data to detect potential security weak-
nesses or misconfigurations, using insights gathered during
reconnaissance and scanning. To assess the severity and ex-
ploitability of identified vulnerabilities, resources such as the
Common Vulnerabilities and Exposures (CVE) database and
the National Vulnerability Database (NVD) are commonly
consulted.

d) Exploitation: : Once vulnerabilities have been iden-
tified, the tester attempts to exploit them to gain unauthorized
access or demonstrate their potential impact. This phase simu-
lates real-world attacks to assess the effectiveness of the target
system’s security defenses. Tools such as Metasploit are often
used to automate and execute these exploits.

e) Reporting: : The final phase involves documenting
the findings of the penetration test in a comprehensive report.
This includes (a) a summary of identified vulnerabilities along
with their severity levels, (b) an assessment of the potential
business impact, (c) detailed accounts of exploitation attempts
and their outcomes, and (d) actionable recommendations for
remediation and improving the organization’s overall security
posture.

This methodology simulates real-world cyberattacks to al-
low a systematic assessment of an organization’s security
posture. In this work, we apply it both for manually obtaining
initial access and within the LLM-assisted pipeline.

MCP Servers

Filesystem MCP
Local File Operations

Pentest ThinkingMCP
(Strategic Guidance)

BrowserMCP
(Web App Interaction)

WebSearchMCP
(Fetch Data from Web)

[File Operation Resubts | [Request Strategy & Next Steps | [Wb Actions/Results | [Search Resuls]
Penetration MCP Client + LLM Linux VM (with Foun Tools & Interact Tartget System
Tester Report Progres / Findings (GPT 4o, Claude, etc) Nmap, Metasploit, etc) Send Back Responses (e.g., HTB Machine)

Fig. 1. Architecture of our penetration testing system integrating the Model Context Protocol (MCP), where an LLM (e.g., Cursor, Claude) operates in tandem
with a pentester, a Linux VM with standard penetration tools (e.g., Nmap, Metasploit), and a set of MCP modules (FilesystemMCP, PentestThinkingMCP,
BrowserMCP, WebSearchMCP). The MCP framework enables context-aware action planning, dynamic guidance, and multi-modal data integration to simulate

real-world penetration testing workflows.
B. LLM-assisted Access Pipeline

In parallel with the manual access baseline, we develop
and evaluate an LLM-assisted software (LIMA) aimed at
replicating the reasoning process of a human penetration tester.
The pipeline leverages a general-purpose LLM to interpret re-
connaissance outputs, suggest tools and techniques, and adapt
based on real-time feedback during initial access attempts.

The LLM operates within a modular framework tailored to
support the initial access phase of penetration testing. While
the broader architecture leverages protocol-driven context
management and tool integration (described in Section [[II-C),
our focus here is on assessing the LLM’s ability to au-
tonomously perform key initial access tasks:

1) Interpret service banners and nmap output

2) Recommend enumeration strategies and appropriate tools

3) Identify or generate suitable exploit scripts based on
discovered vulnerabilities

4) Adapt its recommendations based on system feedback
from executed commands

Leveraging MCP servers and LLMs, our system au-
tonomously performs approximately 90% of the initial access
workflow, requiring only occasional human intervention for
executing complex or privileged actions. This design enables
realistic and controlled testing while preserving the model’s
capacity for iterative, tool-informed reasoning throughout the
initial access phase.

C. Model Context Protocol (MCP)-Assisted Architecture

Our system architecture integrate human testers, a general-
purpose large language model (LLM), and modular context
servers for penetration testing tasks. MCP helps establish a
standardized interface designed to let reasoning agents (such
as large language models or autonomous Als) interact with
modular backends ("MCP servers”) to perform tasks such as
search, planning, tool execution. An MCP server serves as a
pluggable tool that understands prompts, generates structured
outputs, and can collaborate with Al agents in a reasoning
loop.

Figure I]illustrates the interaction between the pentester and
the MCP client, which incorporates a large language model
(e.g., GPT-40, Claude) via an IDE with LLM-based support
(e.g., Cursor) and oversees context across many data sources.
The MCP client, integrated into the IDE, enables smooth
interaction between the LLM and context-sensitive modules
during penetration testing. It facilitates communication with a

Linux virtual machine operating standard penetration testing
tools (e.g., Nmap, Metasploit) and establishes connections
to target systems (e.g., HackTheBox machines) for real-time
testing. A collection of MCP servers—FilesystemMCP [10]]
for file management, PentestThinkingMCP [11]] for strategic
insights, BrowserMCP [12] for web engagement, and Web-
SearchMCP [13]] for online data acquisition—delivers con-
textual information and facilitates dynamic, context-oriented
decision-making. This hybrid architecture allows the machine
to replicate human-like adaptation and reasoning while ensur-
ing consistency across various inputs and activities during the
penetration testing process.

To address GUI-bound workflows, we are
extending BrowserMCP with headless browser control
(Selenium/Playwright-style DOM interaction), OCR prefill
for form parsing, and a human-in-the-loop CAPTCHAv2
handoff API. This preserves ethical boundaries while enabling
BurpSuite-like interception, scripted form navigation, and
dynamic UI state extraction without changing the reasoning
core. These capabilities directly target previously blocked
paths (e.g., custom logins and CAPTCHA gates).

While the generic MCP framework handles context ex-
change, effective offensive reasoning requires a domain-aware
backend specifically tuned for penetration testing; the follow-
ing subsections describes these steps.

1) Our Server: We developed a customized MCP server,
the PentestThinkingMCP, that is designed to provide struc-
tured, context-aware guidance for penetration testing. Unlike
general-purpose MCP servers, it incorporates detailed knowl-
edge of penetration testing strategies, tool logic, and CTF
methodologies, enabling nuanced and contextually relevant
recommendations. Its reasoning engine adapts to the current
system state, leveraging resources such as CVE databases,
port-service mappings, and OS-specific exploits to prioritize
attack steps and suggest optimal paths. The server integrates
both Beam Search, for efficient linear planning, and Monte
Carlo Tree Search (MCTS), for exploratory planning, of-
fering comprehensive coverage of potential attack chains.
Additionally, it is tool-aware, recommending specific utilities
like rustscan, nmap, enumdlinux, or linpeas, complete with
rationales for their selection. The outputs are structured and
detailed, including complete attack chains, node scores, critical
path indicators, and relevant statistics. The server’s LLM-ready
API allows seamless integration into platforms like Claude,
Cursor, and LangChain agents, positioning it as a versatile

and robust reasoning engine for automated penetration testing
systems.

2) Setup and Integration of Our Server: Our MCP server is
available at publicly accessible repository [11]]. After cloning
the repository, run npm install && npm run build to install
dependencies and generate the ready-to-use index. js entry
point.

The next step is to register the MCP server with the
client platform. Open the configuration interface of the cho-
sen agent platform (e.g., Claude, Cursor, LangChain) and
specify the path to the built index.js file. Addition-
ally, set the tool name in the platform configuration to
pentestthinkingMCP to ensure that the client can rec-
ognize and communicate with the server.

Following registration, we establish a connection to the
execution environment. The MCP client should be connected
to an operating system (e.g., a Linux VM) that is equipped
with standard tools commonly used in penetration testing, such
as Rustscan, Nmap, Metasploit, Ghidra, and other utilities.
Ensure that the client can relay system state information (e.g.,
open ports, service banners) to the MCP server and receive
structured outputs in response.

Next, we enable feedback loops by configuring the MCP
client to feed the results of executed actions (e.g., terminal
output from the Linux VM) back into the MCP server.
This feedback loop allows the server’s reasoning engine to
dynamically adjust its strategy, prioritize subsequent steps, and
retain contextual awareness across multiple interactions.

We then integrate additional MCP modules as needed.
For example, FilesystemMCP for file system operations,
BrowserMCP for automatic web interface interactions, or
WebSearchMCP for external data retrieval and CVE lookups.
Each module’s path and tool name must be properly configured
in the client to extend the system’s capabilities.

Finally, we test and verify that the MCP server provides
coherent reasoning outputs (e.g., tool suggestions and next-
step recommendations), that the client correctly executes the
actions, and that logs confirm smooth coordination among the
MCP client, the execution environment, and the server.

3) Overall flow: The PentestThinkingMCP Server, when
integrated into our architecture, takes natural language prompts
that convey the attacker’s goal, target system, available tools,
and operating limitations. A typical prompt may delineate the
target IP (e.g., 10.10.10.3), the overarching objective (e.g.,
extract the user flag), and stipulations such as operating
autonomously, minimizing latency, and avoiding unnecessary
privilege escalation. The server dynamically analyzes known
vulnerabilities (e.g., CVEs), port-service mappings, and sys-
tem state (e.g., open ports) to generate organized, step-by-step
suggestions. The outputs encompass specific instructions (e.g.,
“Run nmap -p- 10.10.10.3”), rationales, path prioritization,
and score criteria that direct the LLM or human operator.
This prompt-based interface facilitates quick, context-sensitive
decision-making customized for practical penetration testing
processes.

D. Evaluation Strategy

To evaluate the effectiveness of the LLM-assisted pipeline,
we compare its performance against manual attempts by
human testers of differing skill levels (described in the Ex-
periments section). We use HackTheBox virtual machines as
testbeds, all categorized as “Easy,” but varying in terms of
vulnerability types, services, and initial access vectors. We
also spawn a dedicated virtual machine (VM) with support
from the company Ethical Byte and set it up to obtain initial
access to it, enabling the LLM to operate in a realistic, tool-
equipped environment with the option of receiving minimal
online assistance when needed (e.g., to execute commands or
inspect system state). Performance is measured in terms of
time taken, number of steps, and success in achieving initial
access.

We additionally coded failure events into the error cate-
gories reported in Section IV-C (retry loops, modality gaps,
environment faults, non-standard config brittleness) to guide
ablation studies and tool integration priorities.

IV. EXPERIMENTS

A. Experimental Setup

To assess the efficacy of our software (LIMA) during
the initial access phase, we devised a controlled experiment
utilizing VMs from the HackTheBox platform [14]. Our aim
was to evaluate the efficacy of human testers with varying skill
levels in comparison to an LLM-assisted system for gaining
first access to target computers.

We selected four HackTheBox machines, namely, LAME,
PC, TwoMillion, and Support, and spawned a Linux VM
“Exam Box” as test cases. These boxes are categorized as
“Easy” in terms of overall difficulty but exhibit diversity
in terms of vulnerability types, exploited services, attack
categories, and required exploitation techniques. This ensured
that while the machines were accessible to beginners, they
still offered enough variation to evaluate generalization across
attack vectors.

Each machine was evaluated under two conditions:

e« A human tester (either beginner or intermediate) at-
tempted to manually gain initial access using standard
penetration testing methodology.

o The same machine was then tested using LIMA designed
to replicate the decision-making and tool usage of a
human tester.

To ensure a fair comparison, both human testers and LIMA
were given access to the same preliminary information: service
banners, rustscan and nmap output, and any publicly
available data relevant to the target system. All experiments
were conducted in a sandbox environment to ensure security
and reproducibility.

Key characteristics of the selected machines, including
their primary vulnerabilities and exploitation categories, are
summarized in Table[[] Subsequent tables present the methods
used for initial access and the time taken by each participant.

TABLE I
SUMMARY OF CATEGORIES AND VULNERABILITIES OF MACHINES USED IN OUR EXPERIMENTS

Box Name Category Tools Used Initial Access Method
LAME 1. Vulnerability Assessment 1. Nmap Remote Code Execution
2. Enterprise Network 2. Metasploit
o . 1. Burp Suite g
TwoMillion 1. Web Application 2. Cyber Chef Command Injection
1. Vulnerability Assessment 1. DNSpy
2. Enterprise Network 2. Wireshark ai ials
Support 3. Security Operations 3 BloodHound Plain-text Credentials
4. Web Application 4. LDAPSearch
1. Vulnerability Assessment
PC 2. Enterprise Network 1. grpcurl SQL Injection
3. Web Application
1. Nmap
1. Web Application 2. ROT13 .
Exam Box > Enumeration 3. Hashcat SSH Login
4. CyberChef

| Expert [l Beginner [Beginner+LLM (GPT 4o)|

(o) [ele]
(=) (=)
1 1

D
(=)
1

(=]
I

Exam Box Mean

Completion time (minutes)
o
[e]

Lame TwoMillion Support PC
Box Name

Fig. 2. Completion time for initial access on the target machines. LIMA
failed to gain initial access on the TwoMillion, because the exploitation path
required BurpSuite, which is not yet available in our MCP stack.

B. Manual Access Baseline

To establish a baseline for evaluating LLM-assisted pene-
tration testing, we first conducted a manual assessment of the
selected HackTheBox (HTB) machines and Exam Box. Three
human testers participated in this study:

« Tester A (Expert): Four years of Capture The Flag (CTF)
experience and an expert-level penetration testing skills.

o Tester B (Beginner): Basic knowledge of penetration
testing with limited hands-on experience.

o Tester C (Beginner): Basic knowledge of penetration
testing with limited hands-on experience, but receives
assistance from LIMA.

The testers followed a standard penetration testing
methodology to gain initial access to each machine. This
included reconnaissance, scanning (with service enumeration),
vulnerability identification, and exploitation. The target
machines were classified as “Easy” by the HTB platform, but
they were distinct in terms of services, vulnerabilities, and
exploitation paths.

Despite the shared methodology, Tester A and Tester B,
demonstrated significant differences in performance:

« Time to Access: The beginner tester (Tester B) took con-
siderably longer across all machines due to unfamiliarity
with key services and the need to research tools, syntax,
and exploitation strategies.

o Service Understanding: Tester B often had to learn
the function and significance of the services discovered

! I GPT 40 [Claude—3.5 Sonnet

201
101 |—| H
o1 . .
PC

S
(=]

(%)
(=)
1

1

Exam Box Mean

Lame TwoMillion Support
Box Name

Completion time (minutes)

Fig. 3. LIMA-only completion times for initial access on five targets.

400__,—,_| Il GPT 40 [] Claude—3.5 Sonnet

(%)
(el
<
)
(s1ua)) 150D

—

(=)

(=]
1

|

Lame TwoMillion Support PC
Box Name

(=]
I

" " 0
Exam Box Mean

Tokens used (kilo-count)
(3]
[
[«]

Fig. 4. Token consumption and API cost from LIMA runs. Overall, Claude
incurs higher token usage and cost per box.

(e.g., SMB, FTP, or Apache), while Tester A was able to
leverage prior knowledge to navigate more efficiently.

« Enumeration Strategy: Tester A performed more fo-
cused and effective enumeration, quickly identifying mis-
configurations or outdated software, whereas Tester B
approached this step more broadly.

« Exploit Generation and Use: Exploiting the identified
vulnerabilities was the most time-consuming step for the
beginner, particularly when manual adaptation of exploit
code was required. In contrast, Tester A was able to find
or adapt exploits with greater ease. This phase is also
considered one of the most complex in the penetration
testing process [3]].

Completion time varied dramatically across testers: the begin-
ner (Tester B) averaged more than one hour per box, whereas
the LIMA-assisted beginner finished in under five minutes and
even outpaced the expert on two machines (Figure [2)).

LIMA performed exceptionally well on the machines
LAME, Support, PC, and Exam Box. When we removed

the human from the loop, GPT-40 completed one target
(LAME) in under five minutes, whereas Claude completed
two targets (LAME and Exam Box) and required up to
20 minutes. Claude completed PC with human assistance
(Tester C). Both GPT-40 and Claude failed on TwoMillion
(Figure [3) because that box’s exploit path requires BurpSuite
functionality, which is not yet available in our MCP stack.
Among the two GPT models tested, Claude 3.5 demonstrated
greater autonomy, independently executing most steps. Claude
was able to run Linux commands, install necessary software,
browse the web, and complete tasks such as creating and
registering users using invitation codes via BrowserMCP, all
without human assistance. However, it required manual input
to solve CAPTCHAs. In contrast, ChatGPT-40 needed human
support at several points, including software installation and
interpreting command outputs. It also failed to extract critical
information from a UserInfo.exe file, which was essential
for gaining initial access to the Support machine from a Linux
environment.

Token consumption differed sharply between the two mod-
els, with Claude averaging almost twice as many tokens per
box and therefore incurring a higher API cost (Figure [).

Here are some key observations.

1) Pattern-matching strength: Both LLMs quickly mapped
SMB and FTP banners on Lame to known CVEs (e.g.
CVE-2007-2447), a step that took the beginner tester
several minutes.

2) Adaptive weakness: When the first payload for Support
failed, Claude repeated variants of the same exploit three
times, whereas the expert tester switched to a different
enumeration path (SMTP misconfig).

3) Non-standard configs: GPT-40 could not parse the custom
web login on PC, highlighting limits on Ul-driven targets
unless BrowserMCP is improved.

4) CAPTCHA bottleneck: Both models stalled on the
CAPTCHA gate of the exam VM until a human entered
the challenge, after which Claude finished in 90 s.

These examples reinforce our quantitative baseline: LLMs ex-
cel at knowledge retrieval and straightforward exploit mapping
but still rely on human creativity for atypical configurations
and interactive hurdles.

C. Error Analysis

Across LIMA only and LIMA assisted runs, we observed
four recurring error modes: (1) Local-optimum retry loops:
the agent repeated variants of a failing exploit instead of
diversifying enumeration (e.g., Support), indicating insufficient
backoff and exploration; (2) Modality gaps: GU/CAPTCHA
gates, custom web flows, and binary only artifacts blocked
progress without specialized tooling (e.g., PC login flow, Exam
Box CAPTCHA); (3) Environment-coupling faults: package
installation and permission issues, plus occasional misreads of
command output, caused execution drift; and (4) Non-standard
configuration brittleness: assumptions about default service
behavior failed on customized targets. Mitigations include
increasing exploration via MCTS schedule adjustments, en-

forcing structured parsing contracts for tool output, and adding
GUI + OCR pathways with human-in-the-loop fallbacks for

anti-bot challenges.
V. CONCLUSION

This paper introduced LIMA, a modular framework that
combines off-the-shelf large language models with Model
Context Protocol (MCP) servers to automate initial access. We
benchmarked Claude 3.5 and GPT-40 on four public Hack-
TheBox machines and one private VM, alongside beginner-
and expert-level human testers. Claude autonomously cap-
tured user-level flags on three of five targets, needing help
only for CAPTCHA prompts; GPT-40 achieved similar cov-
erage but required more frequent guidance. The lone fail-
ure—TwoMillion—was due to the absence of a BurpSuite
MCP module, highlighting the importance of context-specific
tooling. These results provide the first quantitative baseline
for Al-driven initial access on live, heterogeneous systems.
Future work will extend LIMA with GUI integration via
BrowserMCP with OCR support, headless browser control,
and a human-in-the-loop CAPTCHAv2 handoff and systematic
evaluation of defensive counter-measures.

ACKNOWLEDGMENT

Kyu In Lee was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea govern-
ment(MSIT) (No. RS-2024-00463802).

REFERENCES

[1] EC-Council. Learn about the five penetration testing phases, 2022.
Accessed: May 16, 2025.

[2] Tarun Yadav et al. Technical aspects of cyber kill chain. In Security in
Computing and Communications, pages 438-452, 2015.

[3] Thanassis Avgerinos et al. Automatic exploit generation. Communica-
tions of the ACM, 57(2):74-84, February 2014.

[4] Gelei Deng et al. Pentestgpt: evaluating and harnessing large language
models for automated penetration testing. In Proceedings of the 33rd
USENIX Conference on Security Symposium, SEC °24, 2024.

[5] Andreas Happe and Jiirgen Cito. Getting pwn’d by ai: Penetration testing
with large language models. In Proceedings of the European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2023, page 2082-2086, 2023.

[6] Charilaos Skandylas and Mikael Asplund. Automated penetration
testing: Formalization and realization. Computers & Security, 155, 2025.

[7]1 Xiaofeng Zhong et al. Penqa: A comprehensive instructional dataset for
enhancing penetration testing capabilities in language models. Applied
Sciences, 15(4), 2025.

[8] Tom B. Brown et al. Language models are few-shot learners. In Pro-
ceedings of International Conference on Neural Information Processing
Systems, NIPS *20, 2020.

[9] Andreas Happe and Jiirgen Cito. Understanding hackers’ work: An

empirical study of offensive security practitioners. In Proceedings

of the European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2023, page

1669-1680, 2023.

Filesystem Model Context Protocol. Filesystem mcp server: Node.js

server implementing model context protocol (mcp) for filesystem op-

erations. |https://github.com/modelcontextprotocol/servers/tree/main/src/

filesystem, 2025. Accessed: 2025-07-12.

M. I. Saleem. Pentestthinkingmcp: A modular reasoning engine

for ai-assisted penetration testing. https://github.com/ibrahimsaleem/

PentestThinkingMCP, 2025. Accessed: 2025-07-12.

MCP Browser. Mcp browser: Connect ai apps to your browser to

automate tests and tasks. https://browsermcp.io/l Accessed: 2025-07-12.

Exa AI. Web search for llms: One api to get any information from the

web, built for ai products. https://exa.ai/. Accessed: 2025-07-12.

Hack The Box Ltd. https://www.hackthebox.com/.

[10]

(11]

[12]
[13]

[14]

https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem
https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem
https://github.com/ibrahimsaleem/PentestThinkingMCP
https://github.com/ibrahimsaleem/PentestThinkingMCP
https://browsermcp.io/
https://exa.ai/
https://www.hackthebox.com/

	Introduction
	Related Work
	Methodology
	Penetration Testing Framework
	LLM-assisted Access Pipeline
	Model Context Protocol (MCP)-Assisted Architecture
	Our Server
	Setup and Integration of Our Server
	Overall flow

	Evaluation Strategy

	Experiments
	Experimental Setup
	Manual Access Baseline
	Error Analysis

	Conclusion
	References

